4 research outputs found

    APPROACHES TO VULNERABILITY ANALYSIS FOR DISCOVERING THE CRITICAL ROUTES IN ROADWAY NETWORKS

    Get PDF
    All modes of transportation are vulnerable to disruptions caused by natural disasters and/or man-made events (e.g., accidents), which may have temporary or permanent consequences. Identifying crucial links where failure could have significant effects is an important component of transportation network vulnerability assessments, and the risk of such occurrences cannot be underestimated. The ability to recognize critical segments in a transportation network is essential for designing resilient networks and improving traffic conditions in scenarios like link failures, which can result in partial or full capacity reductions in the system. This study proposes two approaches for identifying critical links for both single and multiple link disruptions. New hybrid link ranking measures are proposed, and their accuracy is compared with the existing traffic-based measures. These new ranking measures integrate aspects of traffic equilibrium and network topology. The numerical study revealed that three of the proposed measures generate valid findings while consuming much less computational power and time than full-scan analysis measures. To cover various disruption possibilities other than single link failure, an optimization model based on a game theory framework and a heuristic algorithm to solve the mathematical formulation is described in the second part of this research. The proposed methodology is able to identify critical sets of links under different disruption scenarios including major and minor interruptions, non-intelligent and intelligent attackers, and the effect of presenting defender. Results were evaluated with both full scan analysis techniques and hybrid ranking measures, and the comparison demonstrated that the proposed model and algorithm are reliable at identifying critical sets of links for random and specially targeted attacks based on the adversary\u27s link selection in both partial and complete link closure scenarios, while significantly reducing computational complexity. The findings indicate that identifying critical sets of links is highly dependent on the adversary\u27s inelegancy, the presence of defenders, and the disruption scenario. Furthermore, this research indicates that in disruptions of multiple links, there is a complex correlation between critical links and simply combining the most critical single links significantly underestimates the network\u27s vulnerability

    The Evaluation of Torsional Strength in Reinforced Concrete Beam

    No full text
    International audienceMany structural elements in building and bridge construction are subjected to significant torsional moments that affect the design. A simple experiment for the evaluation of the torsional strength of reinforced concrete beams as a one of this structural elements is presented in this research. The objective of this experiments would be the role of transverse and longitudinal reinforcement on torsion strength. Four beam test samples has been tested with the same length and concrete mix design. Due to the fact, that the goal of this experiment is to determine the effect of reinforcement type on torsion strength of concrete beams; therefore, bars with different types in each beam have been applied. It was observed that the ductility factor increases with increasing percentage reinforcement from the test results. It should be also noted that transverse bars or longitudinal bars lonely would not able to increase the torsional strength of RC beams and both of them can be essential for having a good torsional behaviour in reinforced concrete beams. Introduction. The interest in gaining better understanding of the torsional behaviour of reinforced concrete (RC) members has grown in the past decades. This may be due to the increasing use of structural members in which torsion is a central feature of behaviour such as curved bridge girders and helical slabs. The achievements, however, have not been as much as those made in the areas of shear and bending. Dealing with torsion in today's codes of practice is also very primitive and does not contain the more elaborate techniques. Predictions of current standards for the ultimate torsional capacity of RC beams are found to be either too conservative or slightly risky for certain geometry, dimensions and steel bar sizes and arrangements

    Topological-based measures with flow attributes to identify critical links in a transportation network

    No full text
    An important part of transportation network vulnerability analysis is identifying critical links where failure may lead to severe consequences, and the potential of such incidents cannot be considered negligible. Existing transportation network vulnerability assessment can be categorized as topological, or traffic based. Topological-based assessment identifies the most critical components in the network by considering network structure and connectivity. Traffic-based assessment identifies the most critical components in the network by full-scan analysis and takes into consideration effects of link failures to traffic flow assignment. The former approach does not consider traffic flow dynamics and fails to capture the non-linearity performance function of transport systems while the latter, even though accurate and robust, requires significant computational power and time and may not always be feasible for real life size networks. The primary objective of this paper is to propose new link criticality measures and evaluate their accuracy for transportation network vulnerability assessment. These measures combine characteristics of traffic equilibrium and network topology to balance accuracy and computational complexity. Nine measures are proposed, and their accuracy is compared with three existing traffic-based measures using three case study transportation networks from the literature. Results indicate that three of the proposed measures show strong correlation to the three traffic-based measures while requiring significantly less computational power and time
    corecore